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Parameter-dependent statistical properties of spectra of totally connected irregular quantum graphs with
Neumann boundary conditions are studied. The autocorrelation functions of level velocities c�x� and c̃�� ,x� as
well as the distributions of level curvatures and avoided crossing gaps are calculated. The numerical results are
compared with the predictions of random matrix theory for Gaussian orthogonal ensemble �GOE� and for
coupled GOE matrices. The application of coupled GOE matrices was justified by studying localization phe-
nomena in graphs’ wave functions ��x� using the inverse participation ratio and the amplitude distribution
P(��x�).
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Hamiltonians H�X� of many chaotic systems depend on
external parameters X. Depending on the system there is a
big variety of parameters X. It may be the potential energy
�1�, the magnetic field �2–8�, the shape of billiard’s boundary
�1,9,10� or the lengths of the bonds of quantum graphs �11�.
For parameter-dependent systems the energy levels are deter-
mined through the eigenvalue problem H�X��i�X�
=Ei�X��i�X�. It is conjectured that for quantum chaotic sys-
tems, when the variation in the parameter X does not change
the symmetry of the system, statistical properties of the level
dynamics should be universal �2,3,5,6,12,13�. In order to in-
vestigate universalities in the level dynamics several para-
metric statistics can be used, for example, autocorrelation
functions of the level velocities �5�, the level curvature dis-
tribution, and the avoided crossing distribution �14�. Para-
metric dynamics of random matrices was also investigated
�15–20�.

Quantum graphs have attracted much attention in recent
years �11,21–26�. A lot of properties of quantum graphs have
already been studied. For example, spectral properties of
graphs were studied in the series of papers by Kottos and
Smilansky �27�, where the authors showed that quantum
graphs are excellent paradigms of quantum chaos. The auto-
correlation functions of level velocities for graphs with five
vertices with and without time reversal symmetry were stud-
ied in the paper �28�. However, many other properties of
graphs require much thorough consideration. In this paper
we study the autocorrelation functions of level velocities as
well as the distributions of level curvatures and avoided
crossing gaps for quantum graphs.

Graphs can be considered as idealizations of physical net-
works in the limit where the widths of the wires are much
smaller than their lengths. Among the systems modeled by
graphs one can find, e.g., electromagnetic optical waveguides
�29,30�, quantum wires �31,32�, mesoscopic systems �33,34�,
or microwave networks �35,36�.

A quantum graph �network� consists of n vertices con-
nected by bonds. On each bond of the graph one-dimensional
Schrödinger equation is defined �we assume that �=2m=1�:

−
d2

dx2�i,j�x� = k2�i,j�x� , �1�

where k is the wave vector and the subscripts i , j denote the
bond which connects two vertices with the numbers i and j.
More detailed description of quantum graphs can be found in
the paper �11�.

In order to investigate the autocorrelation functions of
level velocities one should unfold both the energies Ei=ki

2

and the parameter X. Energy levels of quantum graphs are
unfolded by using the mapping

�i = Nav�Ei� , �2�

where Nav�E� is the average number of states, which assures
that the mean level spacing is equal to unity. The average
number of states Nav�E� is given by the formula �27�

Nav�E� =
�EL

�
+

1

2
, �3�

where L is the total length of the graph.
The parameter X was unfolded using the generalized con-

ductance C0�X� �3,2�:

C0�X� = �� ��i�X�
�X

�2	 , �4�

where 
 . . . � means the average over the energy levels. The
unfolded parameter is given by the following formula �37�

x = �
Xin

X
�C0�X�dX , �5�

where �Xin ,X� is the interval of integration. After unfolding
of the parameter X statistical properties of energy levels �i�x�
of chaotic systems should be universal �2,37�. Particularly,
for quantum chaotic systems the parametric level velocities
distribution vi=��i /�x should be described by a Gaussian
distribution �6,37�.

The autocorrelation function of level velocities c�x� is
defined as follows:
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c�x� = � ��i

�x
�x�

��i

�x
�x + x�	 , �6�

where the average is performed over the parameter x and
over all the levels. This function is the measure of correlation
of level velocities which belong to the same energy level.

Another autocorrelation function investigated in this pa-
per is c̃�� ,x� �5�,

c̃��,x� =


i,j
����i�x� − � j�x + x� − ��

��i

�x
�x�

�� j

�x
�x + x�	


i,j


���i�x� − � j�x + x� − ���
,

�7�

where the average is performed over the parameter x only.
This function measures the correlation of level velocities for
energy levels separated by a distance x in space and by a
distance � in the unfolded energy.

We study the autocorrelation functions of the level veloci-
ties c�x� and c̃�� ,x� for quantum graphs. We consider only
totally connected quantum graphs �every vertex is connected
with the others� with no loops and no multiple bonds �every
two vertices are connected by one bond only�. The number
of vertices n defines a graph size. For graphs considered in
this work it was varied between n=4 and n=30. We impose
the Neumann boundary conditions on each graph’s vertex
which imply continuity of the wave function and the prob-
ability current conservation on the vertices. n vertices of a
totally connected quantum graph are connected by B=n�n
−1� /2 bonds which gives B=6 bonds for the graph with n
=4 vertices and B=435 bonds for the graph with n=30 ver-
tices.

The change in the bonds lengths of a graph was chosen to
be an external parameter X. For the graphs with the even
number of bonds the lengths of all the bonds were changed,
while for the graphs with the odd number of bonds we
changed the lengths of all the bonds except the arbitrary
chosen one. The lengths of one half of the arbitrary chosen
bonds of a graph were increased Li,j�X�=Li,j +X while the
lengths of the other half of the bonds were decreased
Li�,j��X�=Li�,j�−X. In this way the total length of the graph
L=i�jLi,j and the mean density of states were independent
of the parameter X. The lengths of the graph’s bonds were
changed in 100 equally spaced steps dX: X=mdX�m
=1, . . . ,100�.

The lengths of the bonds Li,j of each graph were chosen
according to the formula

Li,j =
Li,j�


i�j

Li,j�
, �8�

where Li,j� were uniformly distributed on �0,1�. The total
length of the graph was equal to one L=1. For every size of
a graph we realized 99 graph configurations with different
bonds lengths. To ensure the bonds lengths to be much larger
than the wavelength 	=2� /k, we imposed the condition
Li,j� �X�
10	 to be satisfied for all graph configurations.

For each configuration of the graph about 80 eigenvalues
with the level numbers between 822 902 and 822 985 were
calculated. Figure 1 shows a typical behavior of unfolded
energy levels 822 930��i�822 960 as a function of the ex-
ternal parameter x for graph with n=30 vertices. The param-
eter x was unfolded using formula �5�. In Fig. 1 one can see
very complicated level dynamics with many avoided cross-
ings.

Parametric level velocities of quantum graphs were calcu-
lated using the finite difference method

vi =
��i

�x
�

�i�x + dx� − �i�x�
dx

. �9�

The level velocities were rescaled using the variance �v
= 
���i /�x�2�,

vi =
��i/�x
��v

. �10�

Figure 2 shows the velocity distribution P�v� for graphs
with n=6, 10, and 30 vertices. The results are averaged over
99 graph configurations �approximately 8000 data points for
each configuration�. In all the cases presented in Fig. 2 the
velocity distribution P�v� calculated for quantum graphs is in
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FIG. 1. Parametric energy level dynamics for totally connected
quantum graph with n=30 vertices.
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FIG. 2. The parametric velocity distributions P�v� for quantum
graphs with n=6 �open circles�, n=10 �open triangles�, and n=30
�full circles� vertices, respectively. The numerical results are com-
pared to the Gaussian distribution �solid line�.
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good agreement with the Gaussian distribution �solid line�,
as it is expected for quantum chaotic systems. For the other
graphs which are not presented in Fig. 2 with the number of
vertices between n=6 and n=30 good agreement with the
Gaussian distribution is also observed. However, for the
graphs with n=4 and n=5 vertices situation is different �re-
sults are not shown�. While for the graphs with n=5 the
agreement with the Gaussian distribution is still quite satis-
factory, for the graphs with n=4 the velocity distribution is
lower than the Gaussian curve for small values of level ve-
locities. This result is not surprising; the graph with n=4 is
the simplest possible nontrivial fully connected graph one
can construct and for some spectral statistics it could be too
simple to exhibit behavior that is typical for quantum graphs.
But when the number of vertices of a graph increases the
agreement with the Gaussian curve improves. For this reason
in our further investigation we will concentrate mainly on
graphs with n6 vertices.

Figure 3 shows the autocorrelation function c�x� calcu-
lated for quantum graphs with n=4, 5, 6, 7, 10, 20, and 30
vertices. In all cases the autocorrelation function c�x� was
obtained by averaging over 99 graph configurations. Numeri-
cal results are compared with the results of random matrix
theory �RMT� for Gaussian orthogonal ensemble �GOE�
�solid line�. The numerical simulations of the parameter-
dependent autocorrelation function c�x� within RMT for
GOE were made using the following Hamiltonian model
�10�:

H�X� = H1 sin�X� + H2 cos�X� , �11�

where H1 and H2 are two 500�500 matrices that are mem-
bers of GOE. In our calculations the parameter X was chosen
in 1001 equally spaced points in the interval �0,� /8�. For
each value of the parameter X we ran 99 realizations of H1
and H2. The eigenvalues obtained from the diagonalization
of the Hamiltonian H�X� were unfolded by using the inte-
grated average eigenvalue density for GOE matrices �38�.
The parameter X was unfolded using formulas �4� and �5�.

As it is shown in Fig. 3 the autocorrelation function of
level velocities c�x� calculated for the graphs with n=5 de-
viates in the downward direction from the RMT predictions
for GOE �solid line� for most of the values of the parameter
x, while for the graphs with n7 the autocorrelation c�x�
deviates in the upward direction from the RMT. The larger
the graph is, the bigger is deviation from RMT. Only for the
graphs with n=6 the agreement with RMT is quite good. For
the graphs with n=4 a strong deviation from RMT is ob-
served for 0.75�x�1.5, what is the evidence of a nonuni-
versal behavior of the system. It is worth mentioning that the
difference between the results obtained for big graphs with
n=20 and n=30 is very small what might suggest that for
graphs with n
30 the autocorrelation function c�x� con-
verges to the limiting curve which is not given by the RMT
predictions for GOE.

The reason for the disagreement of c�x� from the RMT
predictions is not exactly known. However, one can assume
�39,40� that it is connected with nonergodic structures of
graphs’ wave functions. In order to check this assumption we
calculated the inverse participation ratio �IPR� that is a mea-
sure of wave functions localization.

In each bond of a graph a wave function can be written as
�40�

�i,j
�N��x� = ai,j

�N�eikNx + ai,j
�N��e−ikNx. �12�

Then the inverse participation ratio for the Nth energy level
can be defined in the following way:

IN =


2B

�ai,j
�N��4

�
2B

�ai,j
�N��2�2 . �13�

It takes the values between Imin=1 /2B for states which oc-
cupy each directed bond with the same probability and Imax
=1 for a state which is restricted to a single bond only, i.e.,
the greatest possible degree of localization �39�. Random
wave hypothesis �RWH� �40� assumes Gaussian random
fluctuations of the complex coefficients ai,j. Thus 
�ai,j�4�=2
and 
�ai,j�2�=1. In this case IRWH�1 /B. In Fig. 4 we compare
the inverse participation ratio In= 
IN� calculated for quantum
graphs of different sizes �circles� with the RWH one �solid
line�. The averaging in the last formula was performed over
the energy levels and over graph configurations. The dotted
line in Fig. 4 shows the minimum value �Imin=1 /2B� of IPR.
Figure 4 shows that for graphs with n
5 the obtained results
are bigger than RWH predictions IRWH. It means that wave
functions of quantum graphs are less ergodic than the ones
predicted by random wave model. Furthermore, it is impor-
tant to note that the result obtained for the graphs with n
=5 and n=6 vertices are the closest ones to the IRWH predic-
tions.

We also calculated the distributions P(��x�) of the values
of the graph wave function ��x� �41�. The distributions
P(��x�) for graphs with n=4, 5, 6, 10, 20, and 30, in the
double logarithmic scale, are presented in the inset of Fig. 4.
The distribution P(��x�) is symmetric, therefore, we consid-
ered only positive values of the wave function ��x�0. The
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FIG. 3. The level velocity autocorrelation function c�x� for
quantum graphs with n=4 �crosses�, n=5 �full diamonds�, n=6
�open circles�, n=7 �full squares�, n=10 �open triangles�, n=20
�open diamonds�, and n=30 �full circles� compared to the predic-
tions of RMT for GOE �solid line�.
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inset shows that the distribution P(��x�) obtained for the
graphs with n=6 �open circles� is the closest one to the
Gaussian distribution �solid line� which is the prediction of
RMT. Thus, the behavior of In and P(��x�) for graphs with
n6 suggest that the counterintuitive results obtained for the
autocorrelation function c�x�, where the best agreement with
RMT was obtained for the graphs with six vertices, are con-
nected with the localization effects.

The above results suggest that in order to describe nu-
merically the behavior of the autocorrelation function c�x�
one can use the concept of coupled M-GOE matrices �42�. A
coupled M-GOE matrix with M �M blocks can be con-
structed using a random GOE matrix. The values of diagonal
blocks elements of the random block matrix are equal to the
values of random GOE matrix elements, while the elements
of off-diagonal blocks are equal to random GOE matrix ele-
ments multiplied by a coupling parameter 0�	�1. By
varying 	 between 1 and 0 one can change the coupling
between the diagonal blocks of the matrix. In this way a
transition between GOE case �	=1� and M-GOE case �	
=0� can be achieved. In our numerical study of the paramet-
ric level dynamics of coupled M-GOE matrices we applied
the Hamiltonian model �11�, but instead of H1 and H2 to be
GOE matrices we used two 400�400 coupled M-GOE ma-
trices.

Let us consider the autocorrelation function c�x� for
graphs with n6 vertices. Figure 3 shows that the paramet-
ric dynamics of graphs with n=6 is closely described by
RMT for GOE, while large discrepancies observed for
graphs with n
6 suggest that their properties can be rather
described by coupled M-GOE matrices. In order to check
this assumption we fitted the values of 	 and M parameters
to describe properly the behavior of the autocorrelation func-
tion c�x� for graphs with n7. In Fig. 5 the results obtained
for quantum graphs with n=7, 10, and 30 are compared with
corresponding curves for coupled M-GOE matrices with M

=3 and 	=0.08, M =12 and 	=0.05, and M =50 and 	
=0.03, respectively. In all cases good qualitative agreement
between the results for quantum graphs �symbols in Fig. 5�
and the corresponding ones for coupled M-GOE matrices
�lines in Fig. 5� is observed.

We also calculated the integrated nearest-neighbor spac-
ing �INNS� distribution for quantum graphs and coupled
M-GOE matrices �see Fig. 6�. We found that INNS calcu-
lated for graphs with the size between n=4 and n=30 �in
Fig. 6 we show only results for n=6 and n=30� and for
coupled M-GOE matrices �in Fig. 6 we show results for ma-
trices with M =50 and 	=0.03� is in good agreement with the
prediction of RMT for GOE. This result is very interesting;
while INNS and the velocity distribution calculated for quan-
tum graphs are in agreement with RMT for GOE, the auto-
correlation function c�x� departs from RMT predictions for
GOE and depends on the graph size n. It seems that c�x� is
much more sensitive to nonuniversal features of the spec-
trum and wave functions of the graphs such as scars �39,40�
than the other considered statistics.
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FIG. 4. The inverse participation ratio �IPR� calculated for
quantum graphs �full circles� compared to the results of random
wave hypothesis �solid line�. The dotted line shows the minimum
values �Imin=1 /2B� of IPR. In the inset we show the distributions
P(��x�) of the wave functions ��x� for quantum graphs with n
=4 �crosses�, n=5 �full diamonds�, n=6 �open circles�, n=7 �full
squares�, n=10 �open triangles�, n=20 �open diamonds�, and n
=30 �full circles� compared to the Gaussian distribution �solid line�.
Distributions are presented in double logarithmic scale.
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FIG. 5. The level velocity autocorrelation function c�x� for
quantum graphs with n=6 �open circles�, n=7 �full squares�, n
=10 �open triangles�, and n=30 vertices �full circles� compared to
the results of RMT �solid line� and coupled M-GOE matrices: M
=3 and 	=0.08 �dotted line�, M =12 and 	=0.05 �dash-dotted line�,
and M =50 and 	=0.03 �dashed line�.
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FIG. 6. The INNS for quantum graphs with n=6 �open circles�,
n=30 �full circles�, and coupled M-GOE matrices with M =50 and
	=0.03 �crosses� compared to the results of RMT for GOE �solid
line�.
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Another important quantity connected with parametric
correlations is the velocity autocorrelation function c̃�� ,x�.
From the practical point of view the definition given by for-
mula �7� is not suitable because it contains delta function
��x�. The presence of delta function means that one should
calculate the correlations of level velocities of energy levels
separated in energies by exactly the value of � from one
another. In practice the number of such levels is close to
zero. That is why we substituted infinitely narrow delta func-
tion by the weight function f�x ,�� with the finite width �,
which allows to define an autocorrelation function c̃��� ,x�
that is more suitable from the practical point of view �5�,

c̃���,x�

=


ij
� f��i�x + x� − � j�x� − �,�2��

��i�x + x�
�x

�� j�x�
�x

	

kl


f��k�x + x� − �l�x� − �,�2���
.

�14�

In our calculations we used a Gaussian weight function
f�x ,�� �5�,

f�x,�� =
1

�2��
exp�−

x2

2�2� . �15�

The autocorrelation function c̃��� ,x� defined by formula
�14� allows to calculate correlations of level velocities of
energy levels separated mutually by ���.

Figures 7�a�–7�c� show the autocorrelation function of
level velocities c̃��� ,x� for quantum graphs with n=6, n
=10, and n=30 vertices, respectively. Calculations were per-
formed for four values of the parameter �=0, 0.1, 0.25, and
1.0. Similarly to the paper �5� the parameter � was chosen to
be equal to 0.03. The numerical curves obtained for quantum
graphs are compared with the theoretical ones for GOE in the
case of graphs with n=6 �Fig. 7�a�� and for coupled M-GOE
matrices for graphs with n=10 and n=30 �Fig. 7�b� and Fig.
7�c�, respectively�. In each case the statistical averaging was
performed over 99 graph configurations.

We found the autocorrelation function c̃��� ,x� calculated
for graphs with n=6 vertices �Fig. 7�a�� to be in good agree-
ment with the theoretical prediction for GOE �solid lines� for
all the values of the � parameter. For quantum graphs with
n=10 and n=30 vertices �Figs. 7�b� and 7�c�� the numerical
results are in agreement with the ones obtained for coupled
M-GOE matrices �broken lines in Figs. 7�b� and 7�c�� for
most values of the parameter x. This fact confirms that
coupled M-GOE matrices can be successfully used for the
description of the parametric dynamics of quantum graphs.
However, for some values of x small deviations from
coupled M-GOE matrices results are observed. In Figs. 7�a�
and 7�b� the biggest deviation is observed for �=0.25 in the
vicinity of the maximum of the autocorrelation function
c̃��0.25,x�.

Let us consider now the level curvatures �̃, the second
derivative of the unfolded energies:

�̃i =
�2�i

�x2 . �16�

We rescaled the curvatures for quantum graphs using the
variance �v:

�i =
�̃i

�v
. �17�

The distributions of level curvatures are presented in Fig.
8�a�, Fig. 8�b�, and Fig. 8�c� for graphs with n=6, n=10, and
n=30, respectively. It is visible that for all of the cases there
is no agreement of the obtained results with the GOE predic-
tion �solid line�. Only for the graphs with n=6 vertices the
tail of the distribution can be described correctly by the GOE
prediction. For the other graphs the level curvature distribu-
tions depart from the GOE one. Therefore, in the case of
graphs with n=10 and n=30 we compare the level curvature
distribution with the results obtained for coupled M-GOE
matrices �broken line�. For the graphs with n=10 vertices
�Fig. 8�b�� small deviations from the results for coupled
M-GOE matrices are observed only for small values of level
curvatures. In the case of graphs with n=30 �Fig. 8�c�� the
curvature distribution calculated for coupled M-GOE matri-
ces �broken line� follows the results obtained for the graphs
for all of the range of the parameter �.

One of the characteristic features of level dynamics of
quantum chaotic systems are avoided crossings which are
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FIG. 7. The velocity autocorrelation function c̃�� ,x� for quan-
tum graphs with �a� n=6, �b� n=10, and �c� n=30 compared to the
results of RMT for GOE �solid lines� and coupled M-GOE matrices
�broken lines�. The autocorrelation function c̃�� ,x� is calculated for
four values of the parameter �: �=0 �circles�, �=0.1 �triangles�,
�=0.25 �diamonds�, and �=1 �squares�.
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often observed between the neighboring levels when an ex-
ternal parameter X is changed �see Figs. 1 and 2�. We define
the avoided crossing distance C as a local minimum of the
distance between two neighboring eigenvalues. The distribu-
tion of avoided crossings P�c� can be used to distinguish
between chaotic systems which belong to different universal-
ity classes. The analytical formulas for the distributions of
avoided crossings P�c� for GOE and GUE were derived by
Zakrzewski and Kuś �14�. For GOE systems the distribution
of avoided crossings P�c� is the following:

P�c� =
2

�
exp�−

c2

�
� . �18�

To calculate the local minimum C of the avoided crossing
distance we used the hyperbolic formula �16�

C =�d2
2 −

�d3
2 − d1

2�2

8�d3
2 + d1

2 − 2d2
2�

, �19�

where di, i=1,2 ,3 are three consecutively calculated dis-
tances between the adjacent levels. Then avoided crossing
distances C obtained in this way are rescaled using the for-
mula

c =
C


C�
, �20�

where 
C� is the mean value of avoided crossing distance.
Figure 9 shows the distribution of avoided crossings P�c�

for quantum graphs with n=6 �open circles�, n=30 �full
circles�, and coupled M-GOE matrices with M =50 blocks
�crosses� compared to the results of RMT for GOE �solid
line�. The numerical results for graphs were obtained as a
result of an averaging over 99 graph configurations. The dis-
tributions of avoided crossings P�c� obtained for graphs
show an excess of small values compared to the theoretical
prediction for GOE �solid line�. However, it is worth noting
that in the range of 0.8�c�1.5 the results obtained for the
graphs with n=6 vertices are slightly smaller than the RMT
prediction for GOE. The results obtained for coupled
M-GOE matrices show also an excess of small values com-
parable to the GOE prediction. However, for c
0.5 M-GOE
results are close to the ones obtained for the RMT prediction
for GOE as well as for the graphs with n=30 vertices.

In summary, we investigated numerically eigenvalue dy-
namics of fully connected irregular quantum graphs with
Neumann boundary conditions of different sizes n=4–30.
We showed that there are some spectral statistics such as the
integrated nearest-neighbor spacing distribution, the para-
metric velocity distribution P�v�, and the distribution of
avoided crossings P�c� that show no or weak sensitivity to
the system size. These statistics show GOE-like behavior.
There are also some other statistics, e.g., the second-order
level velocity autocorrelation functions c�x� and c̃�� ,x� and
the parametric curvature distribution P��� that for larger
graphs �n
6� show deviations from the predictions of RMT
for GOE. In all these cases the obtained results are much
better described by the model of coupled M-GOE matrices.
The agreement of the obtained results with the coupled
M-GOE matrices predictions supported by the results of the
inverse participation ratio and the distributions P(��x�) sug-
gest the existence of nonergodic structures of graphs’ wave
functions connected with localization which cause the quan-
tum dynamical disintegration of large graphs into the union
of weakly interacting smaller graphs.

It is worth pointing out that the agreement of parametric
spectral statistics of quantum graphs with the predictions of
RMT could be restored by making quantum graphs “more
ergodic.” It could be done by randomizing the boundary con-
ditions at the vertices. For example, one can replace vertex-
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FIG. 8. The parametric curvature distribution P��� for quantum
graphs with �a� n=6 �open circles�, �b� n=10 �open triangles�, and
�c� graphs with n=30 vertices �full circles�. The numerical results
are compared to the results of RMT for GOE �solid line� and for
coupled M-GOE matrices �broken line�. Results are presented in
double logarithmic scale.
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scattering matrices by random matrices taken from circular
orthogonal ensemble �43�. Our preliminary results, which are
not presented here, suggest that in this case parametric spec-
tral statistics show good agreement with RMT predictions for
GOE. Moreover, this agreement becomes better for larger
graphs.
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